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I. INTRODUCTION 

Heat capacity work In Physical and Inorganic Group VI 

had, prior to 1969» been limited to measurements above 4°K, 

utilizing relatively standard adlabatlc calorlmetry (1), with 

an accuracy of about .1$ at 30°K, decreasing to about 50̂  at 

due primarily to the limitations of Pt thermometry, A 

couple of the compounds studied (HoC1̂ *6H20 (2), TbCl̂ *6H20 

(2)) exhibited Schottky bumps In the heat capacity in the 

neighborhood of 

Magnetic susceptibility studies in Group VI spanned the 

range 1.2-300®K, and here also interesting peaks appeared in 

the neighborhood of 4°K (in CsNlCl̂  (3), and NlCî 0i,,»2H20 (4)). 

At the same time theoretical work (5) in Group VI on 

electrical transport in metal oxide systems led to predictions 

that could partially be verified by heat capacity work below 

4°K. 

In order to provide an instrument to study thermal behav­

ior of compounds like those mentioned above at T < as 

well as to provide an instrument capable of more accurate (by 

at least a factor of five) heat capacity measurements In the 

temperature range 4-20°K, the construction of a He-3 calo­

rimeter operable in the range .4-20°K was carried out as 

described herein. 

While calorimetric techniques in the range .4-20°K are 

becoming somewhat standardized, the requirements are still 
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rather formidable. For example, heat capacity measurements 

below 4°K require relatively simple shielding of the sample 

from radiation. In many cases no shielding is used other than 

that provided by the walls which separate the sample from the 

cooling baths. However, at 15°K the radiative heat leak is 

large enough to require either "adiabatlc" shielding, or some 

other type of temperature controlled shield. Also, heat leaks 

through thermometer and heater leads, which may be avoided by 

use of superconducting leads below may not be so avoided 

at 20°K with materials presently available. Further, in prac­

tice all thermometry in the range .4-20°K requires calibration 

with reference to gas thermometry, either directly or through 

a secondary standard. In the range .4-4°K several secondary 

standards are conveniently available which cover all or part 

of the range, namely the vapor pressure of liquid He-4, the 

vapor pressure of liquid He-3, and the magnetic susceptibility 

of certain paramagnetic salts, such as cerous magnesium 

nitrate (CMN). However, in the range 4-20°K thermometer cali­

bration is very inconvenient because it usually requires gas 

thermometry, unless one has access to a doped Ge thermometer 

which has been well calibrated against a primary standard. In 

summary, the design of one instrument to cover heat capacities 

in the range .4-20°K requires a "hybridization" of techniques 

used above 20°K with those used below 

The project chosen for the initial use of the He-3 calo­

rimeter was the measurement of the heat capacity of HeÔ  from 
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This study was undertaken for several reasons. 

First, ReÔ  is a simple prototype for the cubic perov­

skites (ABO-j), as shown by Karian (5). In general, the 

perovskites are of interest to solid state research because 

they display a wide range of properties (e.g. from diamagnetic 

to ferromagnetic, from dielectric to ferroelectric, from 

electrically insulating to conducting) (6), and further be­

cause they have shown promise as laser host materials, as 

laser modulators, and as infrared windows (6). 

Second, ReÔ  has been treated theoretically in Group VI 

(5) and elsewhere (7) by two different band theory approaches, 

which predicted quite different low temperature heat capacity 

results, 

Finally, vapor transported ReÔ  has recently become 

available in sufficient quantities from Physics Group VI 

to allow heat capacity studies. 
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II. LITERATURE SURVEY 

À. Calorlmetry from .4-20°K 

He-4 was first liquefied in I9O8 (8), and in 1914 Kamer-

lingh Onnes at Leiden made the first heat capacity measurement 

in the liquid He-4 temperature region (9). His objective was 

to determine if there was an "anomaly" in the heat capacity of 

Hg as it became superconducting. He concluded there was none. 

In 1928 Keesom and Andrews measured the heat capacity of lead 

from 2-17°K, using more advanced techniques than Onnes, again 

to search for an "anomaly" as the sample became superconduct­

ing. They (10) reached the same conclusion as Onnes, 

At the present time it is well known that there is a 

pronounced "anomaly" in the heat capacity in going through a 

superconducting transition (11). Obviously experimental tech­

niques have improved since Keesom's work. Lower temperatures 

can be reached, and much more accurate measurements can be 

made. A number of review articles (12,13,14) and books (15. 

16,17) document the evolution of present day calorlmetric 

techniques used in the range .4-20°K, and efforts are still 

being made to further improve techniques, especially in 

thermometry (18). 

In spite of the demanding experimental requirements, 

calorlmetry below 15®K has contributed significantly to a 

wide variety of studies. Some of the areas of study, along 

with exemplary calorlmetric references, are superconductivity 
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(11), lattice vibrations (19), magnetic transitions (19), 

hyperfine Interactions (19), crystal field theory (19,20), 

quadrupole interactions (19,21), critical phenomena (22), 

verification of the 3rd Law of Thermodynamics (23), macro­

scopic quantum effects (24), magnetic impurity scattering (25), 

van der Waals-type bonding (26), surface effects (27), elec­

tron» phonon interactions (28), and band theory (29). 

B. Electronic Heat Capacity 

In 1928 Sommerfeld (30) treated "free" electrons, which 

were assumed to exist in metallic substances, with quantum 

statistics. His results predicted that under certain condi­

tions the "free" electrons would contribute a term to the 

heat capacity which was linear with respect to temperature, 

i.e. 

C® = yT (1) 

where C® is the molar "free" electron heat capacity at con­

stant volume (commonly referred to as the electronic heat 

capacity), y is a constant, and T is absolute temperature. 

Later in 193̂  Bethe and Sommerfeld (31) elaborated further on 

the subject of "free" electron theory, and presented the equa­

tion 

C® = (2/3)TT2k2N(Ep)T for T « EpA (2) 

where k is Boltzmann's constant, and N(Ep) is the density 

of energy states at the Fermi energy, Ep. Prom simple band 

theory (32) it can be shown that for "free" electrons 
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N(Ep) =2n(2m)3/2 V h'̂  Ep̂ /̂  (3) 

where m Is the "free" electron rest mass, h Is Planck's con­

stant, and 

Ep = ( l/8m) ( 3nĥ /TTV ) (4) 

where n is the number of "free" electrons in a sample of molar 

volume, V. Substituting Equations 3 and if into Equation 2 

leads to 

C® = (4n3k2/3h2)(3nvVTT)̂ /\T (5) 

for one mole of sample. 

At liquid He-4 temperatures the total molar heat capacity, 

Cyp of many materials is given by 

Cy = YT + (6) 

where y and g are constants. The first term is the electronic 

contribution to the heat capacity, and the second term is the 

lattice contribution. From Equation 6 it can be seen that a 

plot of Cy/T versus yields a straight line with slope g and 

intercept y» Hence the electronic term can be measured and 

compared with theoretical predictions. Generally the measured 

value has not agreed with the "free" electron value predicted 

by Equation 5» and frequently m has been adjusted to provide 

agreement, with the new value of m labelled as the "effective" 

electron mass, m*. 

More recent theoretical investigations have sought to 

calculate N(Ep) directly, and using Equation 2, compare 

theory with experiment. Again the agreement has not been 
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good and new concepts such as electron-phonon enhancement 

have been Introduced to accound for the discrepancy. Refer­

enced discussions of the above developments in electronic heat 

capacity have appeared in review articles by Daunt (33)» 

Keesom (34), and Parkinson (35)» and elsewhere (36,19). 

C» HeO^ 

As mentioned in the INTRODUCTION, ReÔ  has served as a 

prototype for the Cubic perovskites. This similarity can 

be visually appreciated by comparing the known (37) crystal 

structure of ReÔ  with that of a cubic perovskite (ABÔ ) (6), 

Figure 1 shows the cubic perovskite structure. The ReÔ  

structure is obtained by substituting rhenium for B, and 

removing the A atom from the body center. 

The electrical conductivity of ReÔ  has been measured and 

found to be roughly one-tenth that of Cu at room temperature 

(38). Optical properties were measured (39) and discussed in 

terms of several band models that had been proposed earlier. 

The de Haas-van Alphen effect in ReÔ  was measured by Marcus 

(40), and the NMR of Re-185 and Re-187 in ReÔ  was measured 

by Narath and Barham (41), who concluded that the conduction 

band was predominantly made up of d electron orbitals. 

An article was published by Honig et al. (42) outlining 

how a tight binding calculation might be made for ReÔ , It 

was suggested that such a calculation would resolve the 
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OXYGEN 

Pig» 1» Crystal structure of a cubic peroskite, ABÔ  
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problem of the nature of the conduction band. Such a calcula­

tion was made by Karlan (5)i and a conduction model proposed. 

Another band theory calculation for ReOg was made by Katthelss 

(7), using the APW method at symmetry points In the Brillouin 

zone, and the Slater-Koster tight binding Interpolation scheme 

for Intermediate points. The models of Karlan and Matthelss 

differ appreciably In the shape of the density of states 

curve, the Perml energy, and the contribution of particular 

orbltals to the conduction band. 
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III. EXPERIMENTAL EQUIPMENT 

A. Calorimeter 

1. General description 

Heat capacity measurements below room temperature usually 

Involve cooling the sample-plus-addenda (SPA) to the lowest 

temperature desired, thermally Isolating the SPA from the 

cooling baths, adding a measured amount of heat to the SPA, 

and determining the temperature Increase due to the heat In­

put. The last two steps are repeated a number of times until 

the highest desired temperature is reached. After analyzing 

the results to obtain the heat capacity of the SPA, the entire 

procedure Is repeated for the addenda alone, and the differ­

ence between the two measurements yields the heat capacity of 

the sample. 

The main body of the apparatus used to carry out the 

above outlined procedure is shown schematically In Pig. 2. 

Table 1 explains the lettering. The cooling system consisted 

of an outer pyrex glass dewar (I), which was filled with 

liquid N2, another pyrex dewar (H), filled with liquid He-4, 

an "Inner" He-4 pot (0), Into which He-4 gas was condensed, 

and a He-3 pot (Q), Into which He-3 gas was condensed. The 

SPA (T) was brought Into contact with the outer baths by put­

ting exchange gas In the sample can (N), and Into contact with 

the Inner baths by spring loading It onto the cooling platform 

(U). 
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Pig. 2, Schematic view of main body of He-3 calorimeter 
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Table 1. Explanation of lettering In Pig, 2 

Letter Name and/or description 

A winch 

B sample space pumping line 

C "Inner" He-4 pumping line 

D brass plate 

E brass neck 

F wood stand (?' high, 37" wide, 31" deep), mounted 
on hard rubber pads 

G tapered flange couplers, 4" l.d. 

H He-4 dewar 

I N2 dewar 

J A1 foil, wrapped around fourteen #36 Cu wires 

K He-3 puisping line 

L brass coupler 

M electrical "takeout" (Stupakoff type) 

N sample can 

0 He-4 pot 

P terminal panel 

Q He-3 pot 

R shield 

S winch line 

T sample plus addenda 

U cooling platform 
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The SPA was thermally isolated from the baths by evacu­

ating the sample can, and lifting the SPA off the cooling 

platform with a winch (A). The "lift off" is commonly re­

ferred to as "opening the heat switch". In an actual experi­

ment the sample can was evacuated after the SPA had reached 

77°K, and the heat switch was opened at about .4°K. 

Heat was introduced into the SPA by passing a d-c current 

through a Pt-9# W wire heater wrapped non inductively around a 

heater post on the sample holder. The temperature of the SPA 

was followed by monitoring the resistance of germanium re­

sistors situated in the sample holder. 

Figure 3 Is a photograph of the main body of the He-3 

calorimeter with the outer dewars removed. 

2. Hô-3 system 

A schematic of the complete He-3 system is shown in Fig, 

4. The He-3 gas was stored in steel bottles 1 and 2, and the 

output side of the 1402 KBG pump (i.e. the storage volume con­

tained between valves 10, 11 and 12). When purchased, each 2.5 

1. He-3 bottle had been filled with 2 liters of He-3 at STP. 

The grade of He-3 used was labelled "Low He-̂ " (of the total 

He. 99.98# was He-3). 

Briefly, He-3 gas was introduced into the He-3 system as 

follows. Valves 1,2,3,5,6,7,10,15,17,19 and 20 were first 

closed. Valves 11,12,13 and 14 were then opened. From this 

valve configuration the He-3 could be pumped back into storage 

with the special Welch 1402 KBG pump by closing valves 9 and 
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Pig. 4. Schematic view of He-3 system 
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14, and opening valves 10 and 7t or 10, 6 and 8, or 10, 1 and 

8. Further discussion of the He-3 system will be found in 

sections III A 6 a and sections IV A and B. 

3» "Inner" He-4 system 

A schematic of the "inner" He-4 system is shown in Fig. 

5. The molecular sieve (Linde 5A) trap was placed in liquid 

Ng to remove water vapor and air impurities from the bottled 

Ee-4 gas. The flow gauge was a differential pressure Hg 

manometer gauge, which was calibrated by measuring the amount 

of water displaced from a graduated cylinder within a given 

time versus the Eg level readings. From such measurements a 

table of cm̂  He-4/sec vs. manometer reading was prepared (Ames 

Lab notebook KI-1 p. 195). Further discussion of the inner 

He-4 system will be found In sections III A 6 a, and IV A and 

B. 

Sample space system 

A schematic of the sample space system is shown in Fig. 

6, The Cu flex tubing was anchored to the wood stand (F, Fig. 

2) with lead weights to prevent pump vibrations from traveling 

down the sample space line to the sample holder. Such vibra­

tions add extraneous heat to the sample holder plus sample, 

which is undesirable because it is random in time, and also 

because it raises the lowest temperature attained by the 

sample. Exchange gas was admitted to the sample space system 

through valve 1, Further discussion of the sample space can 

be found in sections III A 6 a and sections IV A and B. 
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Fig. 6. Schematic view of sample space system 
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5« Winch system 

A schematic diagram of the winch system Is shown In Fig. 

7. The lower end of the stainless capillary line (30 mil o.d., 

8 mil l.d.) was thermally anchored to the outer He-4 bath by 

two Cu wires (#30» B&S gauge), as shown In Fig, 7. Only one 

wire is shown. Further discussion of the winch system can be 

found in sections III A 6 a and section IV B. 

6. Detailed description of low temperature section 

The low temperature section is taken to be that part of 

the apparatus below the brass plate (D, Pig. 2), The dewars 

(H) and (I) will be omitted from this discussion. For pur­

poses of description the low temperature section will be 

divided into two parts, labelled "lower" and "upper" sections. 

a. Lower section A cross-sectional view of the lower 

section of the low temperature section is shown in Fig. 8, and 

photographs showing the lower section in several stages of 

assembly before a measurement are given in Figs. 9# 10, and 

11. For the sake of clarity the thermometer and heater leads 

seen in the photographs are omitted from Fig. 8. The materi­

als of construction and pertinent dimensions are summarized 

in Table 2. 

1). Sample can The sample can consisted of two 

parts. The upper part (U) was permanently fixed in position 

by hard soldering to the He-3 pumping line (W) and to the Ee-4 

pumping line (E). The lower part (G) was attached to the 
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Fig. ?• Schematic view of winch system 
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D» 

I I  1 /2  

a 

3 3/8' 

Fig. 8 Cross sectional view of lower part of "low tempera­
ture section" of He-3 calorimeter 
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U 

Fig. 9. Lower part of "low temperature section" of He-3 
calorimeter, with shield removed 
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Pig. 10, Lower part of "low temperature section" of He-3 
calorimeter, with part of shield added 
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Fig. 11, Lower part of "low temperature section" of He-3 
calorimeter, with shield in place 
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Table 2, Explanation of lettering, materials 
items in Pig. 8 

Letter Description and/or materials 
of construction 

A Sample space pumping line, stainless 
steel 

B Radiation shield, copper 

C Winch line thermal anchor, hard 
soldered to winch line 

D Solder trough, brass 

E He-4 pump-out line, stainless steel 

F Radiation shield, copper foil, 
circular, thermally grounded to He-4 
pot by 2" of #26 Cu wire 

G Sample can, lower section, brass 

H He-4 input line, soft copper tubing 

I He-4 pot, copper right circular 
cylinder 

J Radiation shield, copper right 
circular cylinder 

K He-3 input line, stainless steel 

of construction, and dimensions of 

Pertinent dimensions 

1/2" o.d., 10 mil walls 

2 15/32" o.d., 1/32" walls, 
8" height 

5" of #30 Cu wire 

3/16" deep, 1/8" wide 

3/8" o.d., 6 mil walls 

2 mil foil, 1/2" dia. 

1/32" walls, 11 1/2" height, 3 3/8" 
o.d. except for 1" section at top 
having 3" o.d. 

1/8" o.d., 1/16" i.d. 

1/32" walls, 2 9/16" o.d., 1 1/2" 
inside height 

1/32" walls, 2 15/32" o.d., 8" 
height 

l/l6" o.d., 6 mil walls 
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Table 2, (Continued) 

Letter Description and/or materials 
of construction 

Pertinent dimensions 

L He-3 pot, copper right circular 
cylinder 

M Winch line, cotton thread 

N Cu rods 

0 Sample (ReOg), right circular 
cylinder, wrapped in Cu foil 

P Sample holder, OPHC copper 

Q Cooling platform, copper (gold 
plated) 

R Spring, steel 

S 
S Threaded eylet, copper 

T He-3 input line 

U Sample can, upper section, brass 

V Solder joint, soft solder 

W He-3 pump-out line, stainless steel 

X Set screws, copper 

1/32" walls. 1 7/8" o.d., 
1/4" height 

9" (see Pig, 7), size #50 

l/l6" dia., 4" length 

1/2" dia., 1/2" height 

See Pig. 12 

1/32" thick, 2 1/8" dia., 
7/32" hole in center 

1/8" dia., 5/16" length, made from 
20-25 mil wire 

1/2" length, 2-56 thread 

l/l6" o.d., 6 mil walls 

1/32" walls, 3 1/4" o.d., 1/2" 
height 

3/8" o.d., 6 mil walls 

3/32" length, 4-40 thread 
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upper part by filling the trough (D) with Woods Metal solder. 

Attaching and detaching (G) was easily accomplished by wrap­

ping insulated heating tape around (G) near the trough and 

melting the solder by controlling the current through the tape 

with a rheostat. 

The space enclosed by the sample can is referred to as 

the "sample space", 

2), He-4 pot The He-4 pot (I) was a right 

circular cylinder having an effective inner volume of 115 ± 1 

cm3. As can be seen in Fig. 8, two sections of tubing pass 

through the Se-4 pot. One allows the He-3 pumping line (W) to 

be taken through the pot, and the other allows the winch line 

(M) to pass through the pot. It should be noted that the 3/8" 

He-3 line only contacts the He-4 pot at the solder Joint (V), 

5/8" above the top of the He-4 pot. This feature provides a 

maximum feasible thermal conduction path between the He-3 and 

He-4 pots, thus yielding a minimum heat leak from the He-4 pot 

to the He-3 pot. The lower the heat leak into the He-3 pot, 

the lower the temperature one can reach by pumping on the He-3, 

since the He-3 evaporation rate will be lower. 

Two lines also enter the He-4 pot. The larger one (E) 

was 3/8" o.d, stainless steel, 6 mil wall thickness. The 

smaller line (not shown in Pig, 8 because It was directly 

behind (E)) was 1/16" o,d. stainless, 6 mil wall thickness. 

As shown in Pig. 8, line (E) was reduced to a 30 mil orifice 
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as it entered the Ee-4 pot to reduce problems with superfluld 

He-4 during pumping. 

3). Shield The shield (J) is best seen in Figs. 

10 and 11, Basically, the shield cut down the radiation from 

the sample can walls to the sample, and served as an anchor 

for the spring (R) in the winch line. The shield consisted of 

two main pieces, namely a bottom and a side piece. The latter 

was in the shape of a right circular cylinder, 8" in length, 

and 2i" o.d. The side walls were 1/32" thick, and contained 

random sized holes (as can be seen in Pig. 10) to remove as 

much mass as possible yet allow the structure to be rigid. 

The bottom piece was made as follows. A solid piece of 1/32" 

thick Cu was machined to 2 7/8" diameter. Its edges were then 

turned up so that it slip fitted into position at the bottom 

of the side piece (Aplezon T grease was used In the slip joint 

to enhance thermal contact between the sides and the bottom). 

A 2-56 hole was threaded into the center of the bottom piece 

for the threaded eyelet (S). The eyelet served as the anchor 

point from which the sample holder was spring loaded onto the 

cooling platform (Q). 

The shield slip fitted into position around the bottom of 

the Ee-4 pot, Aplezon T grease was again used in the slip 

joint. There was also a screw-type clamp arrangement, similar 

to that on a hose clamp, at the top of the shield which allowed 

the shield to be squeezed snugly onto the He-4 pot. 



www.manaraa.com

28 

The shield was wrapped with A1 foil, to provide a thin, 

low emissivity surface around the sample, as shown in Fig. 11. 

Six turns of #26 Cu wire were wound around the A1 foil in a 

helix fashion. One end of the Cu wire was clamped to the He-4 

pot (I) with a hose clamp just "below (V). The other end of 

the wire was clamped between two hex nuts that were screwed 

onto the eyelet (S), This arrangement was found necessary to 

bring the shield, especially the eyelet, to the Ee-4 pot tem­

perature, and thus to reduce the heat leak from the eyelet to 

the sample holder to a minimum, 

4). Hfe-3 pot The He-3 pot is shown in Fig. 8 as 

(L), and also in Fig. 9. It was a right circular cylinder 

having an effective volume of 5.8 + .3 cm̂ . Circular grooves, 

about .030" wide and l/l6" deep, were machined into the inside 

bottom of the pot to increase the surface area contact between 

the pot and the liquid He-3. 

Two lines entered the He-3 pot. One (W) was 3/8" o.d. 

stainless steel, with 6 mil wall thickness, and the other (K) 

was 1/16" o.d. stainless with 6 mil walls. The smaller line 

was intended as the input line for the He-3 and the larger 

line was intended as the pump-out line. Eventually the larger 

line was used for both purposes, 

5). Heat switch The heat switch consisted of 

two Cu rods (N) hard soldered to a circular Cu plate (Q), 

commonly called the cooling platform. The plate had a 7/32" 
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hole In the center to allow attachment of the spring loading 

line to the sample holder. To Improve the thermal contact 

between the cooling platform and the sample holder, the plat­

form was gold plated (with ~ a 4 mil layer on both sides), and 

polished with a buffing wheel and red jewelers rouge. The 

heat switch was attached to the He-3 pot, as shown in Pig, 8, 

by inserting the rods into snugly fitting holes in the He-3 

pot and tightening the set screws located in the sides of the 

holes. Aplezon T grease was dabbed on the ends of the rods 

and on the set screws to enhance thermal contact. 

6). Sample holder The sample holder Is shown 

as (P) in Pig. 8. A more detailed drawing is shown in Pig, 

12. It was made entirely from OPHC (oxygen free, high con­

ductivity) copper. It was polished and gold plated before 

use. Before polishing and gold plating it weighed 20,4013 g. 

After gold plating and repollshing It weighed 20.406$ g. As 

shown in Pigs, 8 and 12, the sample holder had two thermometer 

wells. One was 5/32" diameter, and housed the "high tempera­

ture" thermometer (Ge 603). The other was 1/8" in diameter, 

and housed the "low temperature" thermometer (Ge 311). 

The heater post (on the sample holder) was made as fol­

lows, A rod (1/2" length, 1/8" dla.) was machined from OPHC 

Cu, It was deliberately made about ,003" oversized for the 

hole that had been drilled for it In the sample holder, and 

was shrunk to fit the hole by immersing it in liquid N2« 
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Fig, 12, Oblique view of sample holder 
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After the rod was shrunk and inserted into the sample holder, 

it warmed and expanded to fit very tightly into the sample 

holder. 

As can be seen in Fig, 9. the sample holder was tied to 

the cooling platform rods with two pieces of #50 cotton 

thread. The length of the thread was such that it was pulled 

taut when the sample holder was lifted about 1/8" off the 

cooling platform, at room temperature. This thread arrange­

ment was included to prevent excessive heating of the sample 

holder due to vibrations after it had been lifted off the 

cooling platform. 

7). Terminal panel The terminal panel (P, Pig. 

2) was located between the He-3 and He-4 pots. It can be seen 

in Fig. 9 directly under the screw in the bottom of the He-4 

pot. Below the terminal panel 3 mil manganin was used for 

most of the leads in order to minimize the heat leak down the 

leads to the He-3 pot and to the sample holder, while above 

the panel #36 Cu wire was used. 

The terminal panel consisted of 14 pieces (each 1/4" in 

length) of #20 Cu wire hanging from, and epoxied into, a strip 

of vector board (2 1/4" x 1/4" x 1/32"). Each piece of Cu 

(shaped like a J) served as a terminal. The vector board 

strip was suspended at each end from the 36-4 pot, using two 

pieces of #20 Cu wire. These two pieces of Cu wire (each 

'̂ 1/2" long) were epoxied to the vector board, and fastened 
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to the Ee-4 pot with a screw arrangement like that used to 

suspend the heat switch from the He-3 pot (see Pig. 8), 

Fourteen #36 Cu wires (Q formex insulation) each ~ 20" 

in length, were taken in a bundle from the fourteen terminals 

to the electrical takeout (M, Fig. 2). The bundle was wrapped 

several times around the He-4 pot, and glued to it with GE 

7031. for thermal anchoring. 

8). Heater The heater can be seen wrapped 

around the top of the heater post in Pig, 12, It had a room 

temperature resistance of 1152 + 3 ohms, and a helium tempera­

ture resistance of 1073 + 1 ohms, A schematic of the heater 

circuit in the lower part of the low temperature section is 

shown in Fig, I3, 

The heater was made from 34" of 1 mil Pt-9# W wire (Class 

A enamel insulation) as follows. A layer of onion skin paper 

was wrapped around a wooden rod having the same diameter as 

the heater post. The Pt-9# W wire was wound non-induct1vely 

(bifilarly) by hand on the onion skin and taped down with 

masking tape. The col1-and-onion-skin was then slipped off 

the wooden form, and onto the heater post. GE 7031 varnish 

was used to glue the onion skin to the heater post, with care 

being taken not to put any of the GE 703I on the coll itself, 

since some insulating materials are known to be dissolved by 

GE 7031. 

About 1/2" from the heater post the two Pt-9# W leads 
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Fig. 13. Schematic view of heater, and associated lead 
arrangement, within calorimeter sample can 



www.manaraa.com

34 

wore sliver soldered to three 3 mil (silk covered) manganln 

leads. Two of the manganln leads were connected to one Pt-9# 

W lead, as shown in Pig. 9. Such a circuit arrangement takes 

into account the small amount of heat that reaches the sample 

from Joule heating In the manganln leads, as explained else­

where (43). 

The manganln leads were taken from the heater post to the 

He-3 pot, where they were thermally anchored by gluing them 

to masking tape (with GE 703I), which in turn was taped and 

glued (with GE 7031) to the side of the He-3 pot. The man­

ganln lead length between the heater post and the He-3 pot was 

about 3" for each lead. 

From the He-3 pot to the terminal panel (P, Pig. 2), the 

heater leads were made up of three #38 Belden Cu wires 

(Nyclad insulation), and one 3 mil manganln (silk covered) 

wire as shown in Pig. 13, These leads were thermally anchored 

to the He-3 pot by gluing a li-2" section to masking tape, and 

taping and gluing the masking tape to the He-3 pot. GE 7031 

was used as the glue. After leaving the He-3 pot the leads 

were wrapped a couple times around the He-3 pump-out and input 

lines, as seen in Fig. 9. The lead length between the He-3 

pot and the terminal panel was ~11" for each lead. 

From the terminal panel to the electrical "takeout" (M, 

Pig. 2), the heater leads were #36 Cu wire (Q formex insula­

tion) as previously described under Terminal Panel. 
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9). Thermometers Two doped Ge resistors 

labelled as Ge 603 and Ge 311 were used as thermometers, 

Ge 603 was calibrated from ~1-28®K, and Ge 311 was cali­

brated from ~.̂ 5-2°K, as will be explained later, Ge ther­

mometry has been discussed at length in the literature (44), 

and a typical Ge thermometer assembly is shown in Pig. 14. 

A schematic of the thermometer circuit in the lower part of 

the low temperature section is given in Fig. I5. 

a). Ge 603 The thermometer labelled Ge 

603 was made by Honeywell Corporation. At 4,197*K it had a 

resistance of 1040.2 ohms. Its outer case was 9/16" in 

length, and .137" in diameter. The outer case was coated 

with Aplezon T grease before it was placed into the 5/32" 

thermometer well (Pig. 12), When purchased, Ge 603 had four 

10" leads. Two were current, and two were potential leads. 

Each was covered with spaghetti Insulation, These leads were 

shortened to 1̂ " for use in the calorimeter. Each lead was 

made up of 6 strands of tinned Cu wire. After the If" of 

tinned Cu, 3 mil manganin wire (silk covered) was used for 

the thermometer leads, up to the terminal panel (P, Pig. 2). 

Low thermal solder was used to make all solder Joints in the 

thermometer leads. 

About 1 3/4-" - 2" away from the thermometer case a sec­

tion in length) of the manganin leads was thermally 

anchored to the sample holder as follows. Masking tape was 
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Fig. 14. Typical Ge thermometer assembly 
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Pig. Schematic view of thermometers, and associated 
lead arrangement, within calorimeter sample can 
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glued, with GE 7031t to the sides of the sample holder facing 

the rods of the cooling platform. The manganln leads were 

then glued to the masking tape with GE 7031» The anchoring 

was done to Improve thermal contact between the thermometer 

and the sample holder. 

After leaving the sample holder, the manganln thermometer 

leads were taken to the He-3 pot, where a section (1§" - 2") 

was thermally anchored In a manner as described In the above 

paragraph. In this case the anchoring was done to reduce the 

heat leak down the leads from the He-3 pot to the sample 

holder. Prom the He-3 pot to the sample holder each lead was 

~11" in length. 

After leaving the He-3 pot, the manganln leads were 

wrapped a couple times around the He-3 pump-out and input 

lines, and then taken to the terminal panel. Between the 

He-3 pot and the terminal panel each lead was ~11" in length. 

Prom the terminal panel to the electrical "takeout", the 

thermometer leads were #36 Cu wire (Q formez insulation) as 

previously described under Terminal Panel, 

b), Ge 311 The Ge thermometer labelled Ge 

311 was made by Cryocal Corporation. It had a resistance of 

~295 ohms at 'Xl̂ K, The outer case was ,335" In length and 

,124" in diameter. It was coated with Apiezon T grease, 

loaded, and wired in the same way as Ge 603 (described in 

the previous section), 
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b. Upper section The "upper" section of the low 

temperature section Is roughly that part of the apparatus 

from the top of the sample can (N, Fig, 2) to the brass plate 

(D, Pig, 2), A schematic cross sectional view of the "upper" 

section Is shown In Fig, l6. An explanation of the labels, 

dimensions, and materials of construction are given In Table 3» 

7, Thermometer circuit 

Ge thermometer resistance was measured using a Gulldllne 

Instruments "Isolating potential comparator" (ISOPOCO), a 

Guldllne variable standard resistor (VASTAH), model 9801-T, 

a Fluke 845AB null detector, and a Honeywell Electronlk-15 

chart recorder. The general technique of resistance measure­

ment using ISOPOCO was originally suggested by Dauphlnee (45)» 

and can be explained with the simplified thermometer circuit 

shown in Fig, 1?, 

When VASTAR is set at exactly the resistance of the Ge 

thermometer, the voltage drop across the thermometer, Vrp, will 

equal the voltage drop across VASTAR, Vg, since the current is 

the same through both. As can be seen In Fig. l6, the voltage 

drop across the thermometer is used to charge the capacitor, C, 

The capacitor leads are then "flipped" (with a mechanical 

chopper) to put the capacitor across VASTAR. At balance, 

Vg = V̂ , the capacitor will neither charge nor discharge, and 

no current will flow In the voltmeter loop. I.e., the volt­

meter will give a null reading, which can be read either on 
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Fig, 16. Schematic cross sectional view of upper part of 
"low temperature section" of He-3 calorimeter 
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Table 3« Explanation of lettering, materials 
lettered items in Fig, 16 

Letter Description and/or materials 
of construction 

A Sample space pumping line, 
stainless steel 

B "Inner" He-4 pump out line, copper 

C Brass plate 

D Rubber stopper 

E Brass neck 

P Flange, stainless 

G "Inner" He-4 pump-out line, 
stainless steel 

H Radiation trap, brass 

I Coupler, brass 

J "Inner" He-4 pot pump-out line, 
stainless steel 

K "Inner" He-4 pot pump-out line, 
stainless steel 

L Electrical "take out", 
Stupakoff type, 14 pins 

of construction and dimensions of 

Pertinent dimensions 

1/2" o.d., 10 mil walls, 
32 lA" from C to Q 

2" o.d., 2" length 

1/2" thick, 14" o.d. 

size - 0 

4" o.d., 8" length, l/l6" walls 

3 7/8" i.d., 5 3/8" o.d. maximum 

1" o.d., 20 mil walls, 
29" length 

5/8" dia., 1/32" thick 

tog - 1 1/4" i.d., bottom - 5/8" 

5/8" o.d., 10 mil walls, 
2 1/4" length 

3/8" o.d., 6 mil walls, 
1" from coupler to Q 

3/4" o.d. 
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Table 3» (Continued) 

Letter Description and/or materials 
of construction 

M He-3 pump-out line, copper 

N He-3 pump-out line, stainless 
steel 

0 He-3 pump-out line, stainless 
steel 

P He-3 pump-out line, stainless 
steel 

Q Sample can, upper section 

Pertinent dimensions 

3" o.d., 2" length 

1 1/4" o.d., 20 mil walls, 
29" length 

5/8" o.d., 10 mil walls, 
2 1/4" length 

3/8" o.d., 6 mil walls, 
1" from coupler 

see (U), Table 2 
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the recorder or the voltmeter. Thus an unknown resistance 

can be determined by comparing against VASTAR, dialing VASTAR 

until a null Is read on the voltmeter or recorder, and read­

ing the "balance" resistance on VASTAR. 

The thermometer circuit used In the He-3 calorimeter was 

essentially the same as that In Fig, 17, except that a low 

thermal switch (4 pole, triple throw) was added which put 

either Ge 603 or Ge 311 in the measuring circuit. A schematic 

of the thermometer circuit, showing the various components as 

they were ordered in the panel rack (left rack. Fig. 3) is 

shown in Fig. 18, From the electrical takeout to the low 

thermal switch the thermometer leads were #36 Cu wire (Q 

formez Insulation), Each lead was 120" in length. 

Shielding of the thermometer leads was carried out as 

follows. Inside the sample can (N, Fig. 2), the leads were 

shielded by the can itself, which was grounded by running a 

lead from earth ground to pumping line (C, Fig. 2), From the 

sample can (N, Fig. 2) to the rubber stopper "takeout" in the 

brass neck (E, Fig. 2), the thermometer leads were shielded 

by A1 foil (J, Fig. 2), which was also in contact with the 

grounded pumping line (C, Fig, 2), From the rubber stopper 

"takeout" to the low thermal switch (Fig. 17), the leads 

were shielded with braided shielding cable which was attached 

(by way of the low thermal switch chassis) to the grounded 

panel rack (Fig. 17). All the other thermometer leads ex-
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Fig. 18, Schematic diagram of thermometer circuit 
components for He-3 calorimeter 
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ternal to the panel rack (see Fig. 18) were two-lead shielded 

cable with the shielded portion clamped to the grounded panel 

rack at one point along each cable. 

The resistors In the thermometer current supply (Figs, 

17 and 18) were such that 10 currents, ranging from ~.l to 

~25 mlcroamps, were available. It was not necessary to meas­

ure the thermometer current, nor did It have to be extremely 

steady with the comparator type of measuring circuit. This 

Is in contrast to standard potentlometrlc resistance measure­

ments where the opposite is the case, 

8, Heater circuit 

The lower part of the heater circuit has already been 

given in Fig, 13. The complete heater circuit is given in 

Fig. 19. The power supply was made up of two 1.35 volt Hg 

dry cells in parallel (for greater stability). The selector 

switch stepped the resistance in the circuit up or down such 

that heater current could be varied from ~,7 to ~200 micro-

amps in eight steps. The standard resistor was made by 

Rubicon Co, and had a resistance of 1000,05 ohms. The 

"dummy" heater was a 0-2 K variable resistor. The potentiom­

eter was a Leeds and Northrup Model K-3» and the null detector 

was a Fluke model 84-5 AB voltmeter. The timer-heater switch 

was made up of two triple pole, double throw switches which 

were mechanically "ganged" together, such that the heater and 

timer could be activated "simultaneously" (probably to within 



www.manaraa.com

ON-OFF SWITCH 

—I 1.35V 1.35V 

Ha 
DRY 
CELL 
Hg-42R 

CLUTCH 

MOTOR 
CURRENT 
SELECTOR 
SWITCH 6v 

STO. . 
CELL 

1.01903 V 

K - 3  P O T E N T I O M E T E R  
(LEEDS a NORTHRUP) 

115 V AC 

VOLTMETER - NULL DETECTOR 

845 AB 
( J.E FLUKE ) 

'-VWr-' 
P t - 9 %  W  
HEATER 

Fig. 19. Schematic diagram of heater circuit of He-3 calorimeter 



www.manaraa.com

48 

,02 seconds). The timer, which measured the duration of the 

heating period, was made by Standard Electric Time Co. (Model No. 

No. S-13h-10P), It had a 6" diameter dial and could be read 

to .002 sec. 

B. Calibration Apparatus 

1. Ge 603 

Ge 603 was calibrated from ~1-28°K by comparing it 

against another Ge thermometer ( Gr 6I8), which belonged to 

Physics Group II and had been calibrated elsewhere (46). The 

treatment of the data» and discussion of results are given in 

section V A and VI A respectively. 

The apparatus used for calibration of Ge 603 has also 

been described elsewhere (46). Briefly, Ge 603 and Gr 6I8 

(along with several others) were placed in a Cu block which 

could be cooled to ~1®K (using liquid He-4). The block could 

then be essentially thermally isolated from the cooling bath, 

and its temperature controlled by a heater-temperature con­

trolling device. While the temperature was held constant (to 

within ~.002®K), at various temperatures between ~1-28°K, 

potentiometrie resistance readings of the calibrated and un-

calibrated thermometers were taken as a function of time. 

2. Ge 311 and Ge 312 

Germanium thermometer Ge 311 and Ge 312 were calibrated 

in the range ~.45-2®K using the paramagnetic salt technique. 

A discussion of the method, treatment of the data and dis­
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cussion of the results can be found In sections V A and VI A. 

A schematic of the main body of the apparatus used for 

the calibration from ~.45-2®K Is shown In Fig, 20. It can be 

seen to be a modification of the calorimeter by comparing to 

Fig, 2. Only those items are lettered In Fig, 20 which are 

not In Fig. 2, The explanation of the lettering in Fig, 20 

is given in Table 4. 

Table 4, Explanation of lettering in Fig, 20 

Letter Designation 

A brass to copper to glass (EGG) can 

B copper block 

C copper wires 

D salt pill (CMN) 

E salt pill container 

F mutual Inductance coll 

A more detailed cross sectional view of the calorimeter 

modifications made for calibration is shown in Fig. 21, and 

cem be compared with the same cross section of the He-3 

calorimeter (Fig. 8). An explanation of the lettering, 

description of the materials of construction, and dimensions 

for lettered items in Fig, 21 are given in Table 5« Photo­

graphs of the lower part of the calibration apparatus (Fig, 

21) at various stages of assembly is shown in Fig. 22. 
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Pig. 20. Schematic view of main body of calibration 
apparatus 
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Pig. 21, Cross sectional view of lower part of calibration 
apparatus 
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Table 5* Explanation of lettering, materials of construction, and dimensions of 
lettered Items in Pig. 21 

Letter Description and/or materials of 
construction 

Dimensions 

brass to copper to glass (BCG) can, 
right circular cylinders 

B heater holder, copper 

C copper block, right circular cylinder 

3 holes drilled through from sides 

2 Cu connecting rods hard soldered 
to Cu block 

D Cu wire, thermal anchor from He-3 
pot to coll foil 

E Cu wires, seventeen 

F "coll foil" radiation shield, made 
from #38 Cu wires, right circular 
cylinder 

G salt pill, sphere, cerous magnesium 
nitrate powder, CeoMgqCNO-a)!p*24 HoO, 
called CMN  ̂  ̂

dimensions given In Fig. 21, 
except (not shown) glass was 
necked down to 2 1/4" o.d. 

1/2" o.d. maximum, 1/4" o.d. 
minimum, 3/32" hole 5/16" off 
center 

2 1/16" dla., 5/16" height 

middle hole .156" dla., 
other two .134" dla. 

1/16" dla., 5/16" length 

#38 Cu wire 

#26 Cu wire, dimensions shown 
In Fig. 21 

6" length, 1 5/8" l.d. 

1 1/2" dla. 



www.manaraa.com

Table 5» (Continued) 

Letter Description and/or materials of 
construction 

H salt pill container, right circular 
cylinder with sphere hollowed out 
of center, nylon, two halves, plus 
cap for opening in top (not shown) 

I secondary coll of mutual inductance 
coll, copper 

J primary coil of mutual inductance 
coll, copper 

Dimensions 

1 5/8" dia., 1 5/8" height 

see Fig. 22 

see Fig. 22 
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(a) (b) (c) 

Fig. 22. Lower part of calibration apparatus; (a) showing salt pill container, 
(b) showing coil foil around salt pill container, and (c) with BCG 
can and mutual Inductance coil in place 
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The calibrated thermometer, Ge 603» and two uncallbrated 

thermometers Ge 311 and Ge 312 were loaded Into thermometer 

wells in the Cu block, C, which was suspended from the He-3 

pot In a fashion like that described under Heat Switch In 

section III A 6 a. Hanging from the Cu block (C)» were 1? 

#26 Cu wires (E) which passed through the nylon salt pill 

container (H) and salt pill (E). The Cu wires provided 

thermal contact between the salt (Ce2Mĝ (N03)i2'2̂ H20) and 

the Cu block. The salt pill was surrounded by a "coil foil" 

radiation shield (P), which was thermally anchored to the 

He-3 pot by seven #38 Cu wires such as (D). The "coil foil" 

consisted of ~1000 pieces of #38 Cu wire (each ~6" in length) 

lying side by side and glued together with GE 7031 to effec­

tively produce a "sheet" of wires, each wire electrically 

insulated from the other. 

The "sheet" was wrapped around the salt pill in such a 

fashion that each of the 6" lengths of #38 wire was parallel 

to the wires (E). Thus the salt pill was shielded from radi­

ation from the glass walls, which separated the salt pill 

from the outer He-4 bath, and at the same time the "coil foil" 

prevented eddy currents from being generated by the inductance 

coil (P, Pig, 20), in the radiation shield because there was 

not a continuous conducting path around the salt pill. 

The Inductance coil was slipped into position around the 

bottom of the brass-copper-glass (BCG) can (A, Pig. 21) such 
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that one section (I)» of the secondary was centered on the 

salt pill (G). 

A schematic cross sectional view of the Inductance coll 

Is given In Fig. 23. The Cu foil between the primary and the 

secondary was connected to earth ground to reduce the capaci­

tive coupling between the primary auid secondary. 

The primary coll contained two layers (525 turns per 

layer) of #32 Cu wire (heavy polythermaleze Insulation), each 

layer covered with onion skin paper. 

The secondary was wound In two sections. In order to 

make the net mutual Inductance between the primary and 

secondary zero when there was no sample Inside the primary 

the two secondary sections were wound In opposing directions. 

Each section was made up of 10 layers separated by onion skin 

paper, using the same kind of wire as for the primary. There 

were ~1̂ 97 + 1 turns in each section. 

The dimensions of the coil were chosen according to 

formulae given by Wheatley (4?). 

The mutual Inductance between the primary and secondary 

was measured using a Hartshorn bridge type of circuit. The 

bridge circuit is shown in Fig. 24, and has been described 

elsewhere (48). 

The calibration arrangement of the thermometers and asso­

ciated leads within the BCG can is shown in Fig. 25. Outside 

the BCG can the thermometer circuit was exactly the same as 
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PRIMARY ONION 
SKIN PAPER 

K S E  G R A P H  P A P E R  -Cu FOIL 
(1.5 mil) 

SECONDARY 

ONION SKIN 
PAPER 

I 13/32 

23/32 

2 5/ie' 

® WOUND CLOCKWISE 
O WOUND COUNTERCLOCKWISE 

Pig. 23. Schematic cross sectional view of mutual 
inductance coil 
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SCOPE SYNC. 

CRYOSTAT MUTUAL 
INDUCTANCE 
SAMPLE COIL I Ms.fs 

EXTERNAL 
SYNC. 

ISOLATION 

TRANSFORMER 

ESI 

0 
FREO GEN. 

Mc,/'c 
COARSE 
INDUCT. 

60~FILTER 

SCOPE 

45 c/s 
NARROW BAND 
AMPLIFIER 

POWER 
AMP 

i;ioo 
TRANSFORMER 

HI" 

FIXED MUTUAL 
INDUCTOR." 
QUADRUPOLE 
COUPLING 
COILS 

REVERSING 
SWITCH 

DEKATRAN 

Fig. 24. Circuit diagram of "bridge" circuit 
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TO ELECTRICAL TAKE-OUT 

—vw-
GE 312 

—1—wv 
GE 603 

w 
GE 311 

-THERMAL ANCHOR WITH 
GE703I to He-4 POT 

-THERMAL ANCHOR WITH 
GE 7031 to He-3 POT 

-No, 36 Cu WIRE 
(Q FORMEX INSULATION) 

-TERMINAL PANEL ON 
He-3 POT. LOW THERMAL 
SOLDER JOINTS 

-THERMAL ANCHOR TO Cu 
BLOCK WITH GE 7031 

No. 34 Cu WIRE 
{ Q FORMEX INSULATION ) 

"^LOW THERMAL SOLDER 
JOINTS 

I 1/2" LENGTH OF TINNED Cu 
LEADS, 6 STRANDS PER 
LEAD, -40mll STRANDS, 
SPAGHETTI INSULATION 

Fis» 25. Schematic view of thermometers and associated 
lead arrangement within BCG can of calibration 
apparatus 
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that described In section III A 7. and shown in Figs, 1? and 

18. 

C. Sample Preparation 

1. Calibration of thermometers 

The salt chosen for use as a standard thermometer in the 

range ~,45~2®K was cerous magnesium nitrate (CMN), Ce2Mg3 

(N0̂ )]̂ 2*2̂ H20, This salt is frequently chosen as a standard 

below ~1°K as has been discussed elsewhere (49,47). 

The CMN was prepared by dissolving 89.357 grams of com­

mercial Ce(NÔ )̂  and 103.424 grams of reagent grade MgtNÔ lg" 

6H2O in 244 ml of distilled water. The solution was filtered, 

the mother liquor being poured Into Petri dishes and allowed 

to stand for a couple days. As the first crystals precip­

itated they were removed from the dishes and redissolved In 

distilled water. The resulting solution was again poured into 

Petri dishes and allowed to evaporate to complete dryness. 

The large white crystals that appeared were ground in a mortar. 

Silicone oil (Dow Corning 704) was added to the ground crys­

tals as a binder, and the resulting mixture was packed into 

the nylon salt pill container (H, Pig, 21), About 3-4 cm̂  of 

silicone oil was used on the CMN in the container, and about 

45 grams of CMN was packed into the container. 

2. Heat capacity 

The ReÔ  used for the heat capacity measurements was 

obtained from Physics Group VI, and had been prepared by vapor 
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transporting commercially obtained (City Chemical Corp.) 

ReOg. A mass spectroscopic analysis of the ReÔ  used for 

the heat capacity measurements is compared against that of a 

sample of ReÔ  prepared by City Chemical Corp. in Table 6, 

About 9 grams of crystalline vapor-transported ReÔ  was 

received from Physics Group VI. The crystals were randomly 

shaped chunks (with a mean width of ~1 mm), and had a maroon 

color with a metallic luster. The chunks were ground with a 

marble mortar and pestle to a consistency about that of fine 

sand. The ground ReÔ  was then placed In a Cu foil container 

and compressed into a pellet as follows. The Cu container was 

made by wrapping a rectangular piece of 1.5 mil Cu foil 

(~7/8" X ~1 5/8") around a brass rod (.4̂ 92" ± .02" dla) to 

X form a cylinder. One end of the cylinder extended ~l/l6" 

beyond the brass rod. A circular piece of 1.5 mil Cu (~.̂ 9" 

dla.) was set on the end of the rod (Inside the cylinder) and 

the edges of the Cu cylinder were crimped over to hold the 

circular piece in position. The brass rod plus Cu foil cylin­

der (now sealed on one end) was then inserted into a "1/2 

inch" die. The brass rod was removed, leaving the Cu container 

in the die. The ReÔ  sample was added to the container until 

it was ~l/l6" from being full. A second circular piece ('̂ .49" 

dla.) of 1.5 mil Cu foil was placed on top of the sample, and 

the cylinder edges were crimped over. At this point 8.4874 + 

.005 grams of ReÔ  had been loaded into a sealed cylindrical 
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Table 6, Mass spectroscopic analysis of ReÔ  samples 

Element Re03-1® 
(ppm) 

Re03-2̂  
(ppm) 

Element Re03—1 
(ppm) 

ReOg—2 
(ppm) 

Be <1 <•9 Ge N.D. N.D. 
B <30 <50 As 1 .4 
F 4 .3 Se N.D. N.D. 
Na 370 30 Br N.D. N.D. 
Mg 20 Rb N.D. N.D. 
A1 7 3 Sr N.D. N.D. 
81 50 10 Y 40 .6 
P 1 3 Zr N.D. N.D. 
S <50 <10  ̂ Nb <10 <10 
Cl ""20 20-1000® Mo " 5 1 
K 40 2 Ru N.D. N.D. 
Ca 7 5 Rh N.D. N.D. 
Sc <4 <4 Pd N.D. N.D. 
T1 <5 <6 Ag N.D. N.D. 
V 200 .3 Cd <.9 N.D. 
Cr 20 2 In N.D. N.D. 
Mn 5 .2 Sn N.D. N.D. 
Pe 200 .6 Sb N.D. N.D. 
Co 10 .1 Te N.D. N.D. 
N1 7 .06 I N.D. N.D. 
Cu 60 .5 Cs N.D. N.D. 
Zn 40 .9 Ba N.D. N.D. 
Ga < .2 N.D.a La N.D. N.D. 
Ce N.D. N.D. Hf N.D. N.D. 
Pr N.D. Ta N.D. N.D. 
Nd N.D. N.D. W N.D. N.D. 
Sm N.D. N.D. OS N.D. N.D. 
Eu N.D. N.D. Ir N.D. N.D. 
Gd N.D. N.D. Pt N.D. N.D. 
Tb N.D. N.D. Au N.D. N.D. 
Dy N.D. N.D. Hg N.D. N.D. 
Ho 3 3 T1 N.D. N.D. 
Er N.D. N.D. Pb 3 N.D. 
Tm N.D. N.D. B1 N.D. N.D. 
Yb N.D. N.D. Th N.D. N.D. 
Lu N.D. N.D. U N.D. N.D. 

R̂eÔ  made by City Chemical Corp. 

Wapor transported ReÔ . 

Inhomogeneous. 

N̂.D, - not detected. 
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(now ~3/̂ " In height by .495" + .002" dla.) container (made of 

.3454 + ,0001 grams of Cu), and the container was positioned 

In a "1/2 Inch" die. The die was then placed In a hydraulic 

press and a pressure of 500#/ln̂  was applied for ~30 seconds. 

The resulting "pellet" that was extruded from the die was 1/2" 

In height and 1/2" in diameter. The top and bottom of the 

"pellet" were coated with Apiezon T grease ( 20 milligrams 

total), and the "pellet" was clamped In the sample holder 

(see Fig. 12) by placing It under the cross piece and tighten­

ing the screws. 
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IV. EXPERIMENTAL PROCEDURE 

A. Calibration of Thermometers 

1. Ge 603 

Ge 603 was calibrated from ~1-28°K. The calibration 

equipment and experimental procedure have been described else­

where (46). 

2. Ge 311 and Ge 312 

The thermometers Ge 311 and Ge 312 were calibrated from 

~.45-2°k as follows. Three resistors (Ge 603, Ge 311, and Ge 

312) were loaded into the Cu block (C, Fig. 21) and their 

leads connected as described in Pig, 25 and section III B 2. 

The rest of the calibration apparatus was then assembled as 

shown in Pigs, 20 and 21. The He-3 and "inner" He-4 systems 

were evacuated to < 10"̂  mm Hg, The sample space was evacu­

ated with the fore pump (shown in Pig, 6) for ~1 minute, then 

backfilled with ~1 atm of He-4. The He-4 dewar jacket was 

flushed several times with air, then backfilled with N2 ex­

change gas to a pressure of ~1 cm Hg. The N2 dewar (I, Fig, 

2) was filled with liquid N2» and an automatic refill device 

(made by Âlco Valve Co.) was activated, which kept the dewar 

~ full while the apparatus was allowed to cool overnight. The 

following morning liquid He-4 was transferred to the He-4 

dewar (H, Pig, 2), and simultaneously He-4 gas was bled Into 

the "inner" He-4 pot at a rate that was controlled by valve 1 

(Pig, 5)« This "back filling" of the "inner" He-4 pot was done 

with valves 1, 4, 5» 6, 8, 11 and I3 open, and the other valves 



www.manaraa.com

65 

closed. After ~l/2 hour the He-4 dewar was full» and the 

pressure In the Ee-4 system as read on the manometer (see Pig. 

5) had reached ~70-75 cm Hg. "Backfilling" was continued, and 

at ~76-78 cm Hg, the pressure In the Inner He-4 system stopped 

rising, Indicating that condensation of the He-4 In the 

"Inner" pot (D, Pig. 2) had begun. The time was then noted 

and the Ee-4 flow rate was set to give ~50 cm̂  of liquid In 

2 1/2-3 hours, after which the flow was stopped by closing 

valves 1, 5, 6 and 8 in Fig, 5). During the He-4 "backfill" 

all electronic Instruments used were turned on for "warm up". 

After the condensation Into the "Inner" He-4 pot was com­

pleted, the first "point" was taken. The chart recorder was 

engaged (and starting time noted) to record the output from the 

Pluke null detector (see Fig. 17). The resistance dialed on 

the variable standard resistor to produce a null on the 

recorder was noted on the chart paper for each thermometer. 

Simultaneously, mutual Inductance readings were taken by 

another operator using the bridge circuit described In Pig, 

24, Thus a "point" consisted of a series of null resistances 

for each thermometer (recorded on the strip chart) as a func­

tion of time, and a series of mutual inductance readings 

(proportional to the magnetic susceptibility of the salt pill 

(G, Pig, 21)) as a function of time. The time interval for a 

"point" averaged ~20 minutes. 

After the first "point" (at ~4°K) the He-4 exchange gas 
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was pumped from the sample space until the pressure reached 

~10"̂  mm Hg. The pressure over the "inner" He-4 bath was then 

reduced (and thus the temperature of the "inner" bath was 

lowered) by slightly opening valve 10 (Fig. 5). Within 15-30 

minutes the thermometer resistance readings and the mutual 

inductance readings were relatively constant (to within + ,001 

°K), suggesting that the thermometers and the salt pill were 

in thermal equilibrium (although it was possible that both had 

reached steady-state conditions at different temperatures). 

Once again a series of resistance and mutual inductance read­

ings were taken as a function of time. During a "point", 

needle valve 10 (Pig. 5) was manually manipulated to keep the 

He-4 pot temperature constant. After some practice the tem­

perature (as observed on the chart recorder) could be con­

trolled to within one millidegree over a 15-30 minute period. 

In the above described fashion, "points" were taken in the 

range ~1,5-̂ °K over a period of ~13 hours. Above ~2®K only 

Ge 603 resistance readings were recorded, while in the range 

1.5-2°K Ge311 and Ge 312 readings were taken as well. 

The following day the outer and inner He-4 baths were 

refilled as previously described in this section. Then valve 

9 was completely opened (to lower the temperature of the inner 

He-4 pot to ~1°K), and He-3 gas was slowly admitted to the 

He-3 system (see Fig. 4). Before admitting the He-3, valves 

1-7# 10-15, 17» and 19-20 (see Pig. 4) were in the closed 
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position. For admission, valves 11-13 were first opened, then 

14 slightly "cracked" such that all the He-3 was admitted 

after ~10 minutes. Within ~1 hour the He-3 had condensed in 

the He-3 pot, and had reached ~1,1°K (as read on the Hg 

manometer. Pig. 4). Temperatures were then controlled for the 

calibration "points" "below 1°K by controlling the pumping rate 

on the He-3 pot. For most of the "points", valves 1-4, 6, 7, 

9. 14, 15, 17, 19, and 20 were closed, valves 8, 10-13» l6, 18 

and 21 were open and needle valve 5 was adjusted for control. 

For the lowest temperatures valve 6 was used for control. 

In succeeding days the above procedure was essentially 

repeated until ~30 "points" had been taken between ~.45 and 

~4®K. Ge 603 resistance readings were recorded from ~1-4°K, 

and Ge 311 and Ge 312 resistance readings recorded from ~.45-

2®K. In the range ~.72®K to ~1.5°K, the vapor pressure over 

the liquid He-3 bath was measured at each of the "points", 

using a Wild cathetometer to read the manometers, 

B. Heat Capacity Measurements 

1. Addenda only 

After completing the thermometer calibrations, the appar­

atus shown in Pig, 20 was converted to that shown in Fig. 2 

(and described in more detail in section III A), with the 

exception that the sample holder (P, Fig. 8) did not contain 

the sample (0, Pig. 8). 

When the dewars had been positioned as shown in Fig. 2, 
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the He-4 dewar (H, Pig. 2) jacket was flushed several times 

with air at room temperature, then backfilled with Ng gas to 

a pressure of ~2-3 cm Hg. The sample space was evacuated to 

a pressure of ~1 micron, and backfilled to a pressure of ~2-3 

cm Hg with H2 gas. Evacuation of the He-3 and He-4 systems 

was begun. The N2 dewar was filled with liquid N2» and the 

automatic N2 dewar refill device was activated. 

After ~8 hours the sample holder had reached ~77°K, and 

evacuation of the sample space was begun. Liquid He-4 was 

then transferred to the He-4 dewar, and the pressure in the 

He-3 and inner He-4 systems was monitored to check that no 

leaks developed during the subsequent cooling. If no leaks 

developed, ~50-6o cm (of Hg) of He-4 was bled into the "inner" 

He-4 pot (as described in the previous section), and ~l-2 cm 

( of Hg) of He-3 gas was bled into the He-3 system (also 

described in the previous section). The apparatus was allowed 

to cool overnight in this configuration. After ~8 hours the 

sample holder had reached ~30°K, and the pressure in the 

sample space was ~10"̂  mm Hg, The outer He-4 bath was re­

filled, and simultaneously He-4 gas was "backfilled" into the 

inner He-4 system (as described in the previous section). 

During the "backfill" the He-3 gas was bled into the He-3 

system (using the procedure described in the previous sec­

tion) , 

After ~80 cm̂  of liquid had been condensed in the He-4 
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pot. It was pumped to ~1°K within ~15 minutes by opening 

valve 9 (Pig. 5). The He-3 pot slowly followed the Ee-4 pot 

to ~1®K (by conduction through the pumping lines W and K, Pig. 

8). After ~1 hour the He-3 pot reached ~1°K, and an estimated 

3-̂  cm̂  of He-3 had condensed In the He-3 pot. Pumping on the 

He-3 was then begun by opening valve 1 (Pig. 4) wide open. 

Within ~1 hour the sample holder reached 

The sample holder was then essentially thermally Isolated 

by lifting it off the cooling platform (Q, Fig. 8), using the 

winch (Pig. 7), The lift off was usually done over a 2-̂  

minute period, and typically warmed the sample holder to ~.55 

OK. 

After lift off, heat capacity measurements were made 

using the "drift", "rate" technique (50). The temperature was 

allowed to drift for ~10-20 seconds (fore drift), then the 

heater-timer switch was activated to heat the sample holder. 

Below ~1®K heating periods were chosen to produce a change in 

temperature, AT, of ̂ .S/̂ T. Above ~1°K, AT was usually ̂ 1# T. 

After the heating period (~10-60 sec.) the temperature was 

again allowed to drift (after drift) for ~10-20 seconds, some­

times longer depending how long it took for the drift to be­

come constant. The above procedure was then repeated until 

the highest desired temperature had been reached (~10®K for 

the Sample holder). 

During the heating period the voltage drop across the 
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heater, Vjj, and the voltage drop across a standard resistor, 

Vgg, In series with the heater, were measured with a Leeds 

and Northrup K-3 potentiometer, using the circuit shown In 

Pig. 19. 

During a drift the variable standard resistor setting 

was recorded, along with the Fluke sensitivity scale, and the 

thermometer current setting. Also the "zero" or null point on 

the Fluke was recorded from time to time using the zeroing 

switch on the Fluke. 

After reaching ~10®K, the sample holder was set back on 

the cooling platform, cooled to ~.4°K, thermally "Isolated", 

and another series of heat capacity points were taken. This 

procedure was repeated several times until ~100 points had 

been taken In the ~.5-5°K range. 

2. Sample holder plus addenda 

The above procedure was repeated after loading the ReÔ  

sample In sample holder as shown In Pig, 8. 
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V. TREATMENT OP DATA AND RESULTS 

A. Calibration of Thermometers 

1. Ge 603 

The objective of a Ge thermometer calibration Is to 

obtain a relationship between the Ge thermometer resistance 

and temperature. The acquisition of the Ge 603 calibration 

data has been described elsewhere (46) in detail. 

A "point" in the Ge 603 calibration consisted of a series 

of potentiometric voltage measurements (as a function of time) 

across several resistors (only Ge 603» Gr 618, and a standard 

resistor in series with Ge 603 and Gr 6l8 are of importance to 

this discussion). Germanium thermometer Gr 6l8 belonged to 

Physics Group II, and had been calibrated from 1-29̂  as dis­

cussed in (46). In the range 1-4.2°K He-4 vapor pressure 

readings were also taken at each "point". During a "point" 

temperature was usually held constant to within + .002°K. 

The resistance of any thermometer, R̂ , at time t, was 

obtained from Ohms law 

Rj = Vrp/i (7) 

where V«ji was the voltage across, and 1 the current through, a 

given resistor at time, t. The current at time t'was obtained 

from 

1 » Vg/Rg (8) 

where Vg was the measured voltage drop at time t* across a 

standard resistor in series with the calibrated and uncali-
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brated thermometer, and Rg was the known resistance of the 

standard resistor. Since the current was usually stable to 

.01# during a "point", and since Vip was usually measured 

within 60 seconds from Vg, the current from Equation 8 was 

usually substituted for 1 at time t In Equation 7» In some 

Instances a linear Interpolation was made between Vg measure­

ments to obtain 1 at time t. Thus for a given "point", using 

Equations 7 and 8, one calculated R503 and as functions 

of time. Then, using linear interpolation, R503 And R̂ ĝ were 

found at some common time, t̂ . The temperature at t̂  was 

obtained from Rĝ g using an equation of the form 

11 
°̂®10'̂ 6l8 ~  ̂ AnfloSioRaig)* (9) 

n=0 

using two sets of constants, {k̂ ) and (Â *), which had been 

determined as described elsewhere (46). One set of constants, 

(&%)' was used in the range ~1-5°K. Using (Â ), 5̂8 

(as measured by (46)) to within + ,001®K. T̂ g is the 1958 

He-4 vapor pressure scale (51). The other set of constants 

(Ajj*) was used in the range 2.3-29®K, for which T̂ ĝ (aT̂ yggi) 

was a constant volume gas thermometer scale as explained in 

(46). 

Using Equation 9, (Â ), and Rĝ g at t̂ , a set or R6o3~̂ 58 

"points" was generated in the range 1-5°K. These R5Q3 

versus T̂ g values were then computer "fitted" to a polynomial 

expansion of the form 
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M 
®̂Sio'̂ 603 ~  ̂ 0̂ 603 M = 3 to 10 (10) 

m=0 

where the constants were found using a weighted least 

squares analysis discussed In (52). The value of M giving the 

best fit was chosen (as explained In (46)) by looking at devi­

ation plots, and first and second derivatives of Equation 10 

with respect to log R6o3* For Ge 603, M » 10 gave the best 

fit. The root mean square deviation was 2,8x10"̂  degrees. 

The values of for M = 10 are given In Table 7. 

Table 7. Pit constants for Ge 603 using Equation 10, M = 10 

Value Am Value 

Ao 2.19189097232410x10̂  A6 1.27275093200542x10% 

Al -2.61751067599731x10̂  A7 . -8.52075623103587x10° 

2̂ 1.40215153834035x105 As 3.73160573612446x10"! 

A3 -4.4368533485030x10̂  A9 . -9.65346998123353x10"̂  

A4 9.18419242965567x10̂  >
 

H
 

0
 1.12020867849632x10"̂  

65 -1.29946910494100x10̂  

Using an analysis such as that described above, a set of 

fit constants was obtained to relate to T̂ yĝ  in the 

range 2.3-29°K. However, this scale was not used for any of 

the work reported herein and will not be discussed further. 
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2. Ge 311 and Ge 312 

As mentioned In section III B 2, thermometers Ge 311 and 

Ge 312 were calibrated using the paramagnetic salt technique 

(53)* In this case CMN was used as the salt. Basically this 

technique Involved measuring the magnetic susceptibility, X 

(or some quantity proportional to X) of a paramagnetic salt 

obeying the equation 

X = AVT + B' (11) 

where A' and B' are constants and T is thermodynamic tempera­

ture, A* and B*, in principle, can be found by measuring X at 

two known temperatures. In practice one usually measures the 

mutual Inductance, M, produced by the paramagnetic salt in a 

"sample" coll- at various known temperatures T, since it can 

be shown (4?) that 

M = A/T + B . (12) 

The M versus T data is then treated, using a linear least 

squares analysis, to find the best values of A and B, Once A 

and B are known, a measurement of M can be used to determine 

T. The salt pill can then be used as a standardizing thermom­

eter by bringing other devices, such as a Ge resistor, into 

thermal equilibrium with the salt and simultaneously measuring 

M, and some property of the other device, such as the resist­

ance, R, of a Ge resistor. 

As discussed in section IV A 2, a "point" in the Ge 311 

and Ge 312 calibration consisted of s. series of mutual indue-
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tance readings, made with the bridge circuit (Pig, 24) and a 

series of resistance measurements for Ge 603» Ge 311 and Ge 

312, using the thermometer circuit (see Fig, 17). During a 

"point" the temperature was held constant to within + ,002 

degrees, and null measurements were made with the comparator 

(as described in section III A 7). Thus thermometer resist­

ance could be read directly from the variable standard re­

sistor (VASTAR). 

In the range 1-4°K, R603 at time t, was used with Equa­

tion 10 and the fit constants of Table 7» to determine T̂ ĝ  

at time t. In the range ,72-1,51°K He-3 vapor pressure 

measurements were also taken at each "point", using the 

manometers shown in Fig, 4 and a Wild cathetometer. The vapor 

pressure readings were corrected for room temperature, and 

elevation above sea level as outlined in (51). The corrections 

were <,001 degree. Thus, M versus either T̂ Q̂  or TJJQ_̂  or 

both was determined at 21 points in the region ,720-4,192°%, 

The 4,192 point was thrown out because CMN is known (54) to 

deviate from the behavior described by Equation 11 at 4,2°K, 

Below ~1,3°K the T̂ q̂  values were not used because they devi­

ated systematically from the straight line relation expected 

from Equation 12, The remaining M versus T̂ q̂  (and/or 

data were treated by computer to a linear least squares 

analysis. The results were 

M = .044289(20) + ,012985(45) mon 
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where Is now the magnetic temperature associated with a 

mutual inductance reading M. 

Using M readings at time t, and R311 readings at time t, 

and Equation I3, a table of versus was prepared. 

These data were treated to a similar least squares polynomial 

analysis as described for Ge 603. The resulting fit con­

stants for use in the equation 

9 
l°8ioT3ii = ̂  ĥ̂ ®̂®10®311̂  

h=0 

are given in Table 8, The root mean square deviation was 

1.4xlO~3 degrees. 

Table 8, Fit constants for Ge 311 using Equation 14 

Ah Value Ah Value 

AQ -1.538016145816995x10® A5 3.011709059004921x10̂  

Al 2,4000631378079770x108 A6 -3.466813369985113x10̂  

A2 -1.6631874171258640x10® A7 2,563296005810836x10̂  

A3 6.7176130689242510x10? As -1,104638071822687x10̂  

A4 -1.742773842851300x10? A9 2.113950417668669x10̂  

The same analysis as described above was made for Ge 312, 

but Ge 312 developed a 10 megohm short to its case In the 

early heat capacity measurements and was replaced by Ge 311. 

Ge 311 and Ge 312 both came in the same shipment from Cryocal 

Corp. They had the same external dimensions and approximately 
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the same resistance at 4.2°K (~80 ohms). Ge 603 was IO5O 

ohms at 4.2°K. 

B. Heat Capacity Measurements 

The "drift-rate" method was used to determine Cp̂ , the 

mean constant pressure heat capacity, at T%(=(TP+TI)/2). TP 

Is the temperature found "by extrapolating the final tempera­

ture drift to the midpoint of the heating period, and TI Is 

the temperature found by extrapolating the Initial temperature 

drift to the midpoint of the heating period. Cp̂  Is given by 

where Q is the heat added (In this case by passing a current 

through the heater coll shown In Pig. 12) to the system to 

produce the temperature increase from TI to TP. 

Q produced by a current 1 was calculated using the usual 

relationship 

Q = (Vg)(l)(t) = (Vg)(Vgg/Rg)(t) (16) 

where t was the length of the heating period as measured by 

the timer (see Pig. 15)t Vg was the voltage drop across the 

heater (Pig. 15)» and Vgg was the voltage drop across the 

standard resistor (Pig. 15) of known resistance R3 =(1000.05 

ohms). 

TP was determined (using Equation 10 for Ge 603 and 

Equation 14 for Ge 311) from RP, the thermometer resistance 
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at the midpoint of the final temperature drift. RF was found 

from the equation 

RP = ARP + (SP)(DP) (17) 

where ARP was the approximate resistance at the midpoint of 

the final temperature drift, SP was the sensitivity (in ohms/ 

division), and DP was the deflection "off balance" (In divi­

sions). A typical heat capacity point as recorded on the 

Electronik-15 recorder (Pig. 1?) is shown in Fig, 26 to illus­

trate ARP and DP. ARP is the VASTAR setting (see section III 

A 7) for the final temperature drift (ARP * I5OO ohms in Pig. 

26), and DP is the number of divisions that ARP is "off 

balance" at the heating period midpoint (as shown in Pig. 26), 

SP, the sensitivity factor used to convert divisions off 

balance to ohms off balance, was rather difficult to determine 

for the electronic setup used because it turned out to be a 

function of thermometer current, Fluke scale setting, RF, DP, 

and direction of off balance (i.e., whether to the right or 

to the left of the null line shown in Pig. 26). Eventually a 

number of graphs were made up such as that shown in Fig. 27 

from which the sensitivity was obtained. The points on the 

graph were determined (after the heat capacity data were taken) 

by substituting carbon resistors of known resistance in place 

of the thermometers (see Pig. 17) and reading the number of 

ohms on VASTAR required to produce a given deflection under 

the conditions stipulated on Pig, 27, 



www.manaraa.com

79 

NULL POINT 

pilliiiiillllll'KJIIiJMIIIIIII 

HEATER CURRENT NO. 5 
Vh = .060602 VOLTS 
Vhs= .056457 VOLTS 

HEATER OFF 

DF 
TIME = 30.536 sec 

• 

DF=-23.5 DIVISIONS 
DI=I0.5 DIVISIONS 

MIDPOINT OF HEATING 
PERIOD 

HEATER ON 

CHART RECORDER 
TRACE USING GE 603 
THERMOMETER 

THERMOMETER 
CURRENT - 10/1 amps 

FLUKE SETTING -
MILLI VOLT SCALE 

VASTAR SETTING-
1500 OHMS 

• 26. Typical heat capacity data "point" as traced 
the chart recorder 
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TI was determined from RI, the thermometer resistance at 

the midpoint of the Initial temperature drift. In the same 

manner as described for obtaining TP from HF, 

A computer program was written to calculate Cp*, T̂ , 

Cpjjj/Tjji» and for each "point". The Input parameters were 

the thermometer fit constants (from Tables 7 and 8), Vg, Vgg, 

t, ARI, ARP, SI, SP, DI and DP. The calculated results are 

shown In Pig. 28 where curve 1 shows the addenda measurements 

and curve 2 shows the addenda plus sample measurements. The 

peak at ~1°K was produced by the He-4 exchange gas used In the 

Ge thermometers and has been observed and discussed by others 

(18.55). The data from Tĵ  ̂ ~1.5 to Tĵ  ̂ ~18 (°K)̂  were 

treated using a linear least squares analysis to give a 

straight line fit for both curves. The heat capacity of the 

Cu foil used to enclose the ReÔ  sample was subtracted from 

the straight line fit for curve 2 using the equation 

Cp = .6957T + .04783T3 (mllllJoules/mole-°K) (18) 

obtained from reference (56), and the heat capacity of the 

Aplezon T grease (20 milligrams) used for thermal contact 

between the sample and sample holder was also subtracted from 

the fit for curve 2 using the equation 

Cp = .OOO68T + .02714T̂  (mllliJoules/gram-®K) (19) 

obtained from reference (57). Higher order terms were Ignored 

in Equations 18 and 19 because they contributed less than ,1% 

to curve 2 at 
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The equation for curve 1 was then subtracted from the 

corrected equation for curve 2 to give the equation for the 

heat capacity of ReÔ . The results fit the equation 

C 
= 2.85(±.15) + 2.5̂ (+.10)x10-2T2 (mlllljoules) , (20) 

m (mole-degreeZ) 

The second peak shown In Fig, 28 (at Tjĵ  ̂ .3°K̂ ) was of 

unknown origin but appeared to be In curve 1 as well as curve 

2, so was probably a temperature scale effect. Consequently, 

It did not appear to be a property of ReÔ , and was not 

treated any further. 
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VI. DISCUSSION 

A. Thermometer Calibrations 

1, Ge 603 

The major sources of error in establishing T̂ q̂  = T̂ g are 

evaluated as follows. The Ge 603 temperature scale in the 

range ~l-5̂  was prepared, as discussed in section V A 1, from 

R518 and Equation 9, using the set of fit constants (Â ). 

As discussed in (46), could be measured to <.01 ohms 

at which corresponded to <1x10"̂  °K. The precision was 

estimated to be within »02%, 

Equation 9» using (Â ), reproduced the T̂ g temperatures 

readings (that were used to generate (Â )) to within 1 milli-

degree (RM8D = ~,6xlO"̂  deg.). Hence, it is estimated that the 

use of a polynomial expansion, such as Equation 9. contributed 

to < 1 mlllidegree error to the statement T̂ ĝ  *̂ 58* 

The error in the readings (made as described in (46)) 

was somewhat uncertain, but standard He-4 vapor pressure 

thermometry techniques (51) were used, so one might expect 

maximum deviations from T̂ g at any "point" to be of the order 

of 2 millidegrees and <1 mlllidegree on the average. However, 

below ~1,2®K the data is suspected to deviate systematically 

from T̂ g by as much as ,004°K (See section VI A 2). T̂ g Itself 

is now believed to deviate from the true thermodynamic scale 

by ~7 millidegrees at ~4°K, decreasing to ~2 millidegrees at 

~1®K (52). 
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The use of Equation 10 and (Â )̂ In Table 7 to calculate 

6̂03 contributed on the average <1 mlllldegree error to the 

statement T503 ̂  ̂58 ̂ Ince the "fit" had a RMSD of ~,3 of a 

mlllldegree, and R503 could be measured, using the comparator 

circuit (section III A 7). to within .01 0( = -.03x10-3 °K 

at 4°K) at all temperatures. 

The stability of Ge thermometers to repeated thermal 

cycling between room temperature and Is another Important 

factor In consideration of errors. Using thermal shocking 

techniques such as those described in (18), the stability of 

Ge 603 to thermal cycling was estimated to be ~1 mlllldegree. 

Prom the above considerations it was estimated that = T̂ g 

to within .0015°K in the range ~1.2-4.2°K, and deviated-by as 

much as .004°K at 1°K. 

2. Ge 311 

The source of errors in the T̂ î scale are considered 

next. Tjii was prepared, as described in section V A 2, from 

Tjj (Equation 13). Tjj was obtained from and T̂ ĝ  

described in section V A 2, The estimated errors In 1̂ 03 have 

been discussed In the previous section. The He-3 vapor pres­

sures used to obtain Tgg_2 were read with a Wild cathetometer 

capable of .01 mm resolution. At ~.7®K, where the sensitivity 

is lowest, this corresponds to —.SxlO"̂  ®K. Thus Tĝ ^̂  could 

be read to better than 1x10'̂  °K. T„ , is set up to join 
rie*" J 

smoothly to T̂ g, and such was observed to be the case in the 
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Ge 311 calibration where the Tjje-3 M points fell on the 

same straight line (Equation 13) as the vs M points, to 

within from ~1.5-1.2®K. Below ~1,2°K the T̂ o3 M 

points deviated systematically from Equation 13 and were 

rejected In preparing the Tĵ  scale. 

The computer fit (Equation 14) between and 

something to be desired however, with an RMSD of ~l.̂ xlO"3 

degrees, and deviations as large as 3x10"̂  ®K at ~1,5°K, 

Another possible source of error to the T̂ l̂ scale was 

that due to equilibrium problems between the salt pill (CMN) 

and Ge 311. Above ~.7°K It appeared that the thermal contact 

was satisfactory, as evidenced by the fact that when the R̂ ii 

readings changed directions (I.e., when the temperature drift 

changed from warming to cooling or vice versa) the M readings 

followed within a few seconds. However, below ~,7°K, this 

correlation was not always obtained, 

3. Power effects 

There Is always concern that the currents used In the 

thermometers will generate enough Joule heating to produce a 

temperature gradient between the Ge "chip" Itself and the 

thermal contact with the surroundings outside the case (see 

Fig. 14). Therefore very low powers are used (as low as 10**̂ ® 

watts). To check for a power effect, the thermometer current 

Is reduced In steps, while holding the thermometer surround­

ings at a constant temperature, and resistance readings are 
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taken to see if a drop in temperature is indicated. Such 

checks were made with both Ge 311 and Ge 603 and the "power 

effect" was always less than .3zlO"̂  degrees between and 

For Ge 311 the power used ranged from .5x10"̂  watts at 

~«5̂ K to ~10xl0"'̂  watts at ~,85°K, For Ge 603 the powers used 

ranged from ~̂ xlO"''̂  watts at ~1.25'̂ K to 5x10""̂  watts at ~2°K. 

B. Heat Capacity 

The results of the heat capacity measurements indicate 

that the electronic coefficient (Y. Equation 6) for ReÔ  is 

2.85(mJ/mol-deĝ ) which can be compared with the values of 2,50 

and 3.66 (mj/mol-deĝ ) calculated using Equation 2 and values 

of N(Ep) taken from Matthelss (7) and Karlan (5) respectively. 

The lower value would appear to be more satisfactory because 

it allows room for the electron phonon enhancement (58)# 

which must be added to Equation 2. However, theoretical 

values of the electronic coefficient which are higher than 

experimentally determined values are not without precedent 

(33,34,35). To further compare the models it would be inter­

esting to prepare some reduced ReÔ  samples and measure their 

electronic heat capacity. Assuming the rigid band case, 

Karlan*s work predicts that reduced ReOg should have a higher 

Y than ReÔ , while Matthelss' model predicts the opposite. 

Following the standard convention (29), the electron 

phonon enhancement factor, X, can be calculated from 
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(1+X) = 2Y (21) 
nZk̂ Nâ GCBp) 

where y is the experimental electronic heat capacity coeffi­

cient, k is Boltzmann's constant, â  is the lattice constant 
o 

(3*7̂ 7A), and G(Ep) is the density of states at the Fermi 

surface per unit volume (taken, from a graph in (7), to be 

14.43 states/ryd-unit cell). The value obtained of \ from 

Equation 21 was .14. 

The coefficient, g (Equation 6), can be equated with the 

coefficient of the T̂  term in Equation 20, Prom p one cgtn 

calculate the Debye temperature, 9̂ , for ReÔ  in the range 

1-4°K using the equation 

g = 2.4TT̂ nR(l/ej))̂  (22) 

where n is the number of atoms per formula weight (= 4 for 

ReOj), and R is the ideal gas constant. The value of 6̂  thus 

obtained was 312.9 deg. 

Since the cubic perovskite reduced, SrTiÔ , is known to 

become superconducting at ~.25°K (59) the values of X and 

were used to make an estimate of the superconducting transi­

tion temperature Tg of ReÔ  using the equation from (60) 

To = exp 1.04(1+X) (23) 
 ̂ 1.45 X-n(l+.62X) 

where m, is the pseudopotential (p, usually varies from ~.09-

.15). Assuming a value of (j, » .1, Tq is calculated to be 

~10"̂  ̂degrees for ReÔ . 



www.manaraa.com

89 

VII. BIBLIOGRAPHY 

1. Westrum, Edgar P., Purukawa, George T. and McCullough, 
John P. Adlabatic low temperature calorlmetry. In 
McCullough, John P. and Scott, Donald W. eds. Exper­
imental thermodynamics, volume I, pp. 133-211. New 
York, N.Y., Plenum Press, I966. 

2. Rulf, Donald C., Heat capacities of four rare earth tri­
chloride hexahydrates from 5 to 300®K. Unpublished Ph.D. 
thesis, Ames, Iowa, Library, Iowa State University of 
Science and Technology, 1970. 

3. Smith, Joan E., Magnetic susceptibility of cesium nickel 
chloride. Unpublished M.S. thesis, Ames, Iowa, Library, 
Iowa State University of Science and Technology, I969. 

4. Habenschuss, Michael, Ames, Iowa, Iowa State University, 
Magnetic susceptibility of nickel squarate. Private 
communication, (I97O), 

5» Karian, Harutun G„ Tight-binding energy bands of 
perovskite type transition metal oxides, Unpublished 
Ph.D. thesis, Ames, Iowa, Library, Iowa State University 
of Science and Technology, 1969. 

6. Galasso, Francis S. Structure, properties and prepara­
tion of perovskite-type compounds. New York, N.Y., 
Pergamon Press, I969. 

7» Mattheiss, L. P., Phys. Rev, 2nd series I8l (3), 987 
(1969). 

8. Onnes, H. K., K. Nederlandse Akademle vsm Wetenschappen, 
Amsterdam 11, 168 (1908), 

9« Onnes, H. K. and Hoist, G., K. Nederlandse Akademle van 
Wetenschappen, Amsterdam 1%, 76O (1914). 

10. Keesom, W. H. and Andrews, D. H., K. Nederlandse Akademle 
van Wetenschappen, Amsterdam JgO, 434 (1927). 

11. Phillips, N. S., Annales Academlae Scientlarum Fennlcae 
210A. 69 (1966). 

12. Taconls, K. W., Prog, in Low Temp, Phys, 2» 153 (19̂ 1). 

13. Hill, R. W., Prog, in Cryogenics 1, 179 (1959). 



www.manaraa.com

90 

14. Roberts, T. R., Sydorlak, S. G., Phys. Rev. 98, I672 
(1955). 

15* Hoare, F. E., Jackson, L. C. and Kurtl, N., Eds., Exper­
imental cryophysics, London, Butterworths, I96I. 

16. White, G. K.. Experimental techniques in low-temperature 
physics, 2nd éd., London, Oxford University Press, 1968. 

17. McCullough, J, P. and Scott, D. W., Eds., Experimental 
thermodynamics. Volume I. New York, N.Y., Plenum Press, 
1966. 

18. Swenson, C. A., Critical Reviews in Solid State Sciences 
1. 99 (I970). 

19. Gopal, E. S. R., Specific heats at low temperature. New 
York, N.Y., Plenum Press, 1966. 

20. Gerstein, B. C., Heat capacity and magnetic susceptibil­
ity of thulium ethyl-sulphate. Unpublished Ph.D. thesis, 
Ames, Iowa, Library, Iowa State University of Science 
and Technology, i960. 

21. Keesom, P. H. and Bryant, C. A., Phys. Rev, Letters 2, 
260 (1959). 

22. Heller, P., Reports on Progress in Phys, 731 (1967), 

23. Glauque, W. P. and Fritz, J, J., J. Am. Chem. Soc. 71, 
2168 (1949). 

24. Keller, W, E., He-3 and He-4, New York, N.Y., Plenum 
Press, 1969. 

25. Daybell, M. D. and Steyert, W. A.. J. Appl. Phys, 40(3). 
1056 (1969). 

26. Flnegold, L. and Phillips, N. E., Phys. Rev. 1969, 
177(3), 1383 (1969). 

27. Soral, M., Kosakl, A., Suga, H. and Seki, S., J. Chem. 
Thermodyn. 1969. 119 (I969), 

28. TrofImenkoff, P. N., Corbotte, J. P. and Dynes, R. C., 
Phys. Lett. 27A. (1968). 

29. Clune, L. C. and Green, B. A,, Phys. Rev, B 1(4) 1459 
(1970). 



www.manaraa.com

91 

30. Sommerfeld, A., Zeltschrlft fur Physlk 4?. 1 (1928). 

31. Bethe, H. and Sommerfeld, A., Handbuch der Physlk, 
Berlin (Springer) 333 (1933). 

32. Kittel, C., Introduction to solid state physics, 3rd ed.. 
New York, N.Y., John Wiley and Sons, Inc., 1968, Chap­
ter 7. 

33. Daunt, J. G., Prog, in Low Temp. Physics 1, 202 (1955). 

34. Keesom, P. H. suid Pearloan, N., Handbuch der Physlk 14 
(I), 282 (1956). 

35. Parkinson, D. H., Rept, on Prog. In Physics 21, 226 
(1958). 

36. Mott, N. P., Adv. In Phys. ]J, 325 (1964). 

37. Wells, A. P., Structural inorganic chemistry, 3rd ed., 
London, Oxford University Press, 1962. 

38. Goodenough, J. B., Rogers, D. B. and Ferreti, A., J. Phys. 
Chem. Solids 2007 (1965). 

39. Pelnleib, J., Scouler, W, J., and Perretti, A., Phys. 
Rev. ]̂ , 765 (1968). 

40. Marcus, S. M., Phys. Lett. 584 (1968). 

41. Narath, A. and Barham, D. C., Phys. Rev. 176(2). 479 
(1968). 

42. Honlg, J. M., Dlmmock, J. 0. and Kleiner, W. H., J. Chem. 
Phys. 50(12), 5232 (1969). 

43. Neighbor, J. E., Review of Scientific Instruments 497 
(1966). 

44. Cataland, G. and Plumb, H. H., J. Research Natl. Bur. 
Standards ̂ OA, 243 (1966). 

45. Dauphlnee, T. M., Can. J. Phys. 577 (1953). 

46. Rogers, J. 8., TainsH, R. J., Anderson, M. 8., and 
Swenson, C. A., Metrologla 4, 47 (1968). 

47. Abel, W. R., Anderson, A. D., and Wheatley, J, C., Rev. 
Sci, Inst. 444 (1964). 



www.manaraa.com

92 

48. Rioux, P. J., Single crystal susceptibility study of one-
dlmenslonal antlferromagnetlc Interactions In CsNlClg. 
Unpublished Ph.D. thesis, Ames, Iowa Library, Iowa 
State University of Science and Technology, I969. 

49. Hudson, R. P., Cryogenics £, 76 (I969). 

50. Stout, J. W., In McCullough, J. P. and Scott, D. W., eds,. 
Experimental thermodynamics, vol. I., P. 239» New York, 
N.Y., Plenum Press, I966, Chapter 6« 

51. Brlckwedde, F. G., van Dyk, H., Dur1eux, M., Clement, 
J. R. and Logan, J. K., J. Research Natl. Bur. Standards 
64A. 1 (i960). 

52. Cetas, T. C., Magnetic thermometers between 1 and 20°K, 
Unpublished Ph.D. thesis, Ames, Iowa, Library, Iowa State 
University of Science and Technology, 1970. 

53» Hoare, F. E., Kurtl, N., and Jackson, L. C., Experimental 
cryophysics, London, Butterworths, I96I; and McCullough, 
J. P. and Scott, D. W., Experimental thermodynamics. 
Vol. I, New York, N.Y., Plenum Press, I968. 

54. Leask, M. J, M., Orbach, R., Powell, M. J. D. and Wolf, 
W. P., Proc. Roy. Soc. A272. 371 (I963). 

55» Cochran, J, P., Shlffman, C. A., Neighbor, J. E., Rev. 
Scl. Instr. 499 (1966). 

56. Ahlers, G., Rev. Scl. Instr. 477 (I966). 

57o Westrum, E. P., Chow, C., Osborne, D. W, and Plotow, H. E. 
Cryogenics 2# 43 (1967). 

58. Buckingham, M. J. and Schafroth, M. R., Proc., Phys. Soc. 
London Ser. A67» 828 (1954). 

59. Schooley, J, P., Hosier, W. R., and Cohen, M. L., Phys. 
Rev. Letters 12, 474 (1964). 

60. McMillan, W. L., Phys. Rev, 167(2). 331 (1968). 



www.manaraa.com

93 

VIII. ACKNOWLEDGEMENTS 

I would like to thank my major professor. Dr. Bernard C, 

Gersteln for his guidance, patience and moral support during 

my graduate work, 

I would like to express my gratitude to Dr. William A. 

Taylor for his excellent advice, and assistance with the 

experimental work, and also Mr. William Shlckell for his com­

petent help with experimental problems. 

Finally, my gratitude to my wife, Sue, for prodding me 

to the finish line. 


	1970
	The electronic heat capacity of Re03
	David Anthony Keller
	Recommended Citation


	tmp.1412262005.pdf.DuM64

